المعين هو شكل هندسي يتكون من أربعة أضلاع أو جوانب لها نفس الطول، فمعرفة قياس طول ضلع واحد فيها يعني معرفة جميع أطوال الأضلاع الأخرى لأنها تكون بنفس القياس، كما تكون أضلاعها المتقابلة متوازية، كما يوجد للمعين ارتفاع يمكن قياسه من طول الخط الواصل بين منتصف الضلعين المتقابلين، ويتميز المعين بوجود قطرين أيضًا، ويكون قياسهما عبارة عن طول الخطوط التي تصل بين الزوايا المتقابلة مع بعضها البعض في المعين، ويتميز القطران بأنّه يتعامد كل منهما على الآخر كما أنهما يُنصّفان الزوايا التي يمران من خلالهما، أما زوايا المعين الأربعة فإن كل زاويتين متقابلتين في المعين متساويتين في القياس، حيث يكون زوجين من الزوايا حادتي القياس بينما الزوجين الآخرين منفرجتي القياس، أما إذا كانت إحدى زواياه قائمة فإنّه يتحول إلى مربع، وفيما يأتي ذكر أبرز طرق حساب المعين.[٢]
الزوايا فيه اثنتان حادّتان واثنتان منفرجتان، وفي حال كانت إحدى هذه الزوايا قائمة يُصبح الشكل مربّعاً.
المعين عبارة عن مثلثين وكل مثلث متساوي الساقين، يشتركان في القاعدة.
صفحات للمحررين الذين سجَّلوا خروجهم تعلَّم المزيد مساهمات
يمكن أيضاً حساب ارتفاع المعين اعتماداً على طول أحد أضلاعه، وقيمة المساحة، وقيمة إحدى زواياه، وذلك باستخدام المعادلتين الآتيتين:[٣]
مساحة متوازي الاضلاع بكل انواعه مع امثلة توضيحية لحساب المساحة
يشكل قطرا المعين read more محوري تناظرٍ له، وتشكل نقطة تقاطعهما مركز تناظر له أيضاً.
ارتفاع المعين ومسائل رياضية تطبيقية طرق حساب مساحة المستطيل شارك المقالة
محيط المعين= طول الضلع الأول + طول الضلع الثاني + طول الضلع الثالث + طول الضلع الرابع.
للمعين زاويتين حادتين و اخريتين منفرجتين، إلا إن كانت إحدى الزوايا قائمة، عندئذٍ يكون الشكل مربعاً.
تسجيل الدخول نسيت كلمة المرور؟ مستحدم جديد؟ انشئ حساب هذا الموقع محمي بواسطة recaptcha ، تطبّق شروط الخدمة و سياسة الخصوصية لجوجل تسجيل حساب جديد
عند وضع المعين في دائرة، لن تلامس الدائرة جميع أضلاع المعين.
فيسبوك جوجل حساب ويكي هاو ليس لديك حساباً؟ إنشاء حساب
تم عرض هذا المقال ١٧٠٬٧٨٠ مرة/مرات. المعين هو متوازي أضلاع أضلاعه الأربعة متساوية في الطول. يوجد ثلاث صيغ لحساب مساحة المعين ستجد شرحها في هذا المقال.
يمكن رؤية شكل المعين في مجموعةٍ متنوعةٍ من الأشياء في عالمنا المحيط، مثل الطائرة الورقية، ونوافذ السيارة، إشارات المرور، بعض المجوهرات تكون على شكل معينٍ، أيضًا هيكل المباني، المرايا... .